Tags: westridge school for girls


  03:09:00 pm, by Laurel Hamilton, Projects Coordinator, Run on Sun   , 745 words  
Categories: All About Solar Power, Commercial Solar, Residential Solar, Non-profit solar, Westridge PAC Project, Chandler School

Video Release: Making the world better...one roof at a time

Its not every day that we get to unveil a beautifully crafted video showcasing just what it is that makes Run on Sun tick. Happily today is different! Our fabulous distributor, Baywa r.e., has partnered with us to create our very own professional marketing video:

Baywa r.e. has been more than just a products distributor for Run on Sun. We began our partnership with Baywa, formerly Focused Energy, back in 2009 when we found them to be a much more detail oriented operation than their competitors. They proved to us they could translate what happens on the roof to ensuring we got all the pieces necessary to make installations run smoothly. Now, our primary reason for continuing to partner with Baywa r.e. has evolved. Their management and staff all share our vision for a solar industry that is better. One that operates with the highest degree of ethics and transparency and a mission to help consumers save money while reducing our impact on the environment. They have supported us, and other small installers, in many ways far beyond the normal functions of a distributor. Case in point is this video which they produced to help us share our message with our community.

I’d also like to point out a few details on the installations featured in this video: 

LAWC Reservoir

Lincoln Avenue Water Company Reservoir Project: 

This was our second project with Lincoln Avenue after helping their administrative office go solar in 2011. The 2015 Reservoir project was in partnership with Baja Construction building the ground mount structure to support the 246 LG280 watt panels and Enphase M250 microinverters. Run on Sun installed the solar system to utilize otherwise unused land below the reservoir offsetting nearly 50% of the energy required to run their pumphouse.  

Westridge School for Girls:

Westridge School for Girls

While we didn’t end up shooting video at Westridge we really wanted to be sure to include this project as it is near and dear to our hearts. As Run on Sun’s first school installation and Jim Jenal’s (Founder and CEO) daughter’s alma mater we really enjoyed helping them go solar. In 2012 we installed a solar array on their Performing Arts Center consisting of 216 LG250 watt solar panels which were the cream of the crop back then! Working with Westridge School for Girls was a wonderful experience which included our very own Jim Jenal leading a science class tracking a solar eclipse using the Enphase microinverter data! We believe solar at schools offer such great added benefits providing a resource for students to learn about renewable energy as well as math, engineering, environmental issues and more! 

Chandler School Solar Installation

Chandler School:

In the Fall of 2015 we completed the installation of 147 LG300 watt solar panels on the gym at Chandler School. Chandler was also a fantastic partner to work with partially because we share their values in environmental stewardship. We hope that growing up in an educational environment where solar power is the norm will help students navigate a future where sustainable clean solutions will be the only way forward. We would also like to give a huge shout out to the amazing Trevor Spicer, Director of Operations and Information Technology, for the off-the-cuff cameo and kind words in the video. 

Residential 14kW Project:

Residential Installation

This was the most recent Run on Sun installation featured in the video, where a lot of the dialogue with Jim Jenal takes place. This is the second home these particular clients have installed solar with Run on Sun as they recently moved into this beautiful Altadena mid-century modern home. Their roof was a perfect slate for a solar array, and we wouldn’t be surprised if this particular feature was one reason they chose the property! Owning electric vehicles and wanting to offset as much of their electricity as possible we maxed out the space with 44 LG320’s, top of the line panels today! It didn’t hurt that the view from the roof was one to die for, spanning much of the valley with Los Angeles skyscrapers in the distance. Of course, as evidenced by one of the shots in the video, we could also see the smog levels each day we worked at this site further enhancing our resolve to continue to get more solar out there!

Thanks for reading as we share some of the projects we are most proud of. And of course, let us know if you’d like to get a free quote today and share in our commitment towards the belief that the world can be better one roof at a time!


  07:54:00 am, by Jim Jenal - Founder & CEO   , 270 words  
Categories: PWP Rebates, Westridge PAC Project

Enphase Revisits Westridge Solar Project

A little over three years ago (my how time flies), we installed a 52kW solar project at the Westridge School for Girls, here in Pasadena. At the time, the project got a fair amount of attention (including an award from the City), was featured in a video (watch it here), and was the lead story in Enphase Energy’s Summer 2012 Newsletter.

Three years down the road, the folks at Enphase decided to circle back and check-in to see how the Westridge project had performed over the years - both in terms of saving money for the school, as well as being incorporated into the curriculum (another key goal of the project).

Solar on the Roof, Power in the Classroom article

The article, titled — Solar on the Roof, Power in the Classroom — details how the Westridge Solar system has outperformed the modeled performance, producing 105% of the expected yield.  That overproduction actually benefits the school twice: most obviously by lowering the bills that much more, but secondarily, by providing a larger than expected performance-based rebate payment.

Beyond that, however, the system has also proved to be an effective teaching tool, allowing Westridge students to analyze the copious amounts of data provided by the Enphase microinverters through the Enlighten, cloud-based data reporting service.  One science class, for example, was able to discover how analyzing that data could detect the occurrence of a partial solar eclipse.

We are very proud of our partnership with Westridge and we look forward to doing another project with them in the near future.

Likewise, we are grateful for partners like Enphase Energy who are as committed to producing long term solutions as we are.  That is one powerful pairing!


  09:48:00 am, by Jim Jenal - Founder & CEO   , 306 words  
Categories: Commercial Solar, Westridge PAC Project

Enphase Features Run on Sun and Westridge School for Girls

We have written at some length about Enphase micro-inverters in the past, but today Enphase returned the favor.  Here was the lead story in their Summer 2012 Newsletter that just went out this morning:

Enphase newsletter featuring Run on Sun

That is Run on Sun Founder & CEO, Jim Jenal, posing amidst our solar installation at the Westridge School for Girls here in Pasadena.  The article quoted Jim and provided a link back to our video highlighting the Westridge installation.  Pretty cool.

Even cooler, however, was the meeting that we had this week with Mark Abrams, the Director of Product Management for Enphase.  We met with Mark to provide him with feedback about their existing products and to offer our insights about their next generation product that is still in prototype. This was a great exchange - we told Mark what we loved about their products - but also important ways in which the product could be improved, at least in the eyes of an installer!  Mark listened intently, took notes, and promised to see what he could do to incorporate our feedback.

It is hard to over estimate the value of such interactions between manufacturers and installers, yet it doesn’t seem to happen as often as it should.  So here’s a note to the rest of the manufacturers out there - if you really want to improve your products, start spending (more) time with installers, and I don’t mean your sales people.  (Trust me, we already get more than enough contact from your sales reps.)  You might not like everything that you hear, but learning first hand what our problems are is the best way to build a long-lasting relationship with the folks who are the most important to your long-term success.

After all, that might be Jim’s face that you see in that photo, but it’s Enphase’s products that made that project a reality.


  08:31:00 am, by Jim Jenal - Founder & CEO   , 1364 words  
Categories: All About Solar Power, Westridge PAC Project

Solar Eclipse - A Data Geek's View

On Sunday, May 20, 2012, an annular eclipse was visible in large parts of the United States, including here in Pasadena. To the data geeks here at Run on Sun, that gave us a view to the eclipse that was just a bit different - a Data Geek’s view, if you will.

One of the great things about having a solar power system that is monitored - particularly with a system like Enlighten from Enphase - is that it automatically captures a great deal of data and sometimes that data can be used to look at some surprising things - like a solar eclipse! So this will be a brief tutorial on how to take a raw data set and turn that into a graphical representation of the solar eclipse. (We used Excel 2010 for our analysis, but any tool that allows for the creation of pivot tables should allow you to do the same thing.)


We started out with a simple hypothesis - since the annular eclipse covered as much as 80% of the sun’s surface (as seen from SoCal), we would anticipate that there would be a significant impact on the output of a solar power system during the eclipse. If we looked at the data from the days prior to the eclipse (excluding any days that were dominated by cloud cover during the relevant time when the eclipse occurred) we should see a noticeable decline in system output relative to the other days. If we graphed those days on the same graph, the eclipse should be an obvious outlier.

But to test our hypothesis, we would need to gather some data!

Data, data, data…

Enphase Enlighten reportsThe Enphase Enlighten website allows a system owner to access a variety of reports about how the system has been performing. One of those reports is titled “Site Recent Power Production” and it provides a comma separated values (csv) file that contains the site’s power output over five minute intervals for the preceding seven days.

Excel will open the .csv file and once you have it opened, you can begin the process of massaging the data into the form needed to “see” the eclipse. (If you care to follow along, you can download the dataset that we used by clicking on this link.)

raw data

The raw data consists of two columns: a time stamp value and the power produced at that moment in time in Watts. The time stamp combines the full date with the time of day, and as you can see here, the time increases in five minute intervals. Altogether, our week’s worth of data consists of 2,016 data pairs which we will ultimately want to graph.

However, we want to partition the data into seven discrete days (which will then be graphed on top of each other), with hours of the day and five-minute intervals on the X-axis. To achieve that end, we need to add some columns based on the time stamp value. Fortunately, Excel has a number of built-in functions that will let us do exactly what we want to do with a minimum of effort.


By-the-way, it is interesting to note that the system is already generating a significant amount of power by 5:45 in the morning! The system being monitored has 209 solar panels which means that at 5:45 we were receiving, on average, just over 2 Watts per panel.

This ability to produce power at very low levels is another way in which a microinverter system helps to maximize overall system yield.

adding hour and minute columns

We continue this process by creating columns for the hour and the minute. Fortunately, this is nothing more than using the built-in “hour” and “minute” functions from Excel.  By selecting our date/time field with hour and minute, we can establish the remaining data fields that we will need.

However, we now have lots of rows of data to process and making sense of that can be difficult—difficult, that is, unless you use pivot tables.

Pivot Table to the Rescue!

Now we are ready to create our pivot table. For those of you who do not know, pivot tables are a data geek’s best friend, and the means by which massive amounts of data gets distilled into a meaningful table - and ultimately a graph. There are lots of things that you can do with a pivot table but the one we will be using here is very simple.

On the insert tab choose pivot table. For the data source select the power column and the three new columns that we just created. You can embed the table on the current worksheet or in a new one.

our pivot table - order out of chaos

Then do the following:

  • Select the “Day” field and drag it to the “Column Labels” box.
  • Select the “Hour” field and drag it to the “Row Labels” box.
    • Do the same thing with the “Minute” field.
  • Now drag the “Power Produced” field to the “Values” box. Note that it gets labeled as “Count of Power Produced (W)” in the box and all of the data values are “1″s. What Excel is doing is counting how many power values there are for each five-minute interval - not what we want.
    • To change it, click on the down arrow next to the field and select “Value Field Settings…” Where it says “Summarize value field by” change from Count to Sum and click OK.
  • Click on the heading “Column Labels” and type Days.
  • Do the same for “Row Labels” and enter Hours/Minutes.
  • We don’t need the “Grand Total” so right mouse on that heading and select “PivotTable Options…” Click on the “Totals & Filters” tab and deselect both of the Grand Totals options.

If you’ve followed along correctly, you should have a pivot table that looks like the one on the right.

Click on the drop down filters and deselect the “blank” value for both Days and Hours/Mins. Also, we only want hours where the total power exceeded zero watts, so select Value Filters from the Hours/Minutes drop down. Select Greater Than… and enter 0.

Now we are ready to create our graphs.

A Picture is Still Worth a Thousand Words!

We have distilled our 2,016 rows of raw data into a more manageable form, but it is still hard to “see” our eclipse - time to graph this and let the data speak for itself!

first eclipse graph

From the PivotTable Tools menu, choose options and then click on PivotChart. Choose a Line chart from the pop-up. Right mouse on the chart and select “Move Chart…” to move it to a new worksheet. This looks pretty good, but Day 5 is very noisy - let’s exclude it. Click on the Day drop down and deselect Day 5. That’s our eclipse graph on the right.

Can you “see” the eclipse now? The chart is still quite busy; let’s exclude some additional days to see if we can make this cleaner.

Return to the Day drop down and exclude every day except days 3 & 7. Now our new graph just tracks two days and we excluded a lot of distractions from what we were seeking.

second eclipse graph

Here’s our new graph:

The graph clearly illustrates that these two days saw almost identical power production for the vast majority of the day, until late in the afternoon. The timing of that sole difference coincides with our eclipse - can we zoom in for a closer look?

Easily enough we can - all we need to do is limit the time span displayed to the time period associated with the eclipse. The eclipse began around 5:25, reached its maximum roughly an hour later and was over by an hour after that. By selecting the Hour drop down filter we can limit the time period to the four hour window between 5 and 8.

Here is our final “view” of the eclipse:

final view of the eclipse

Our final graph clearly depicts the impact of the eclipse on the power output of our solar array.

Monitoring systems are generally considered an important part of commercial solar systems since they help the system owner maximize their investment. However, this is just one example of how a monitoring system can also be used as a tool to observe and quantify other real world phenomenon - making this an important adjunct to a solar power system at a school - like this one at the Westridge School for Girls in Pasadena.


  08:17:00 am, by Jim Jenal - Founder & CEO   , 35 words  
Categories: Commercial Solar, Non-profit solar, Westridge PAC Project

Putting it All Together - Installing Solar at Westridge - Part 5

Here it is - our video from our 52.3kW solar project at the Westridge School for Girls here in Pasadena.  Enjoy!

You can follow this link to see the complete series:
Installing Solar at Westridge.

1 2 3 >>

Jim Jenal is the Founder & CEO of Run on Sun, Pasadena's premier installer and integrator of top-of-the-line solar power installations.
Laurel Hamilton is Run on Sun's Projects Coordinator, and together they author this blog.
Run on Sun also offers solar consulting services, working with consumers, utilities, and municipalities to help them make solar power affordable and reliable.

Ready to Save?

Let’s Get Started!

Give Us a Call!

626.793.6025 or

Click to Learn More About Commercial Solar Power!

We're Social!

Follow Run on Sun on Twitter Like Run on Sun on Facebook


Run on Sun helps fight Climate Change
multiple blogs