Category: Residential Solar

Pages: 1 2 3 4 5 6 7 8 9 10 11 ... 23 >>


  11:26:00 am, by Jim Jenal - Founder & CEO   , 253 words  
Categories: All About Solar Power, Solar Economics, Residential Solar, Ranting

Only YOU Can Save Rooftop Solar!

Solar works!Smokey the Bear knew a thing or two about urgency, and appropriating his call to action seems particularly apt right now.  Today, rooftop solar is under concerted attack before the California Public Utilities Commission (CPUC).  If we are to maintain the growth of solar, with its tens of thousands of jobs here in California, as well as its huge benefits in reducing air pollution - particularly greenhouse gas emissions - we need YOU to act now.

Our friends over at Vote Solar, along with the California Solar Energy Industries Association (CalSEIA) are working to beat back the insidious proposals coming from the Investor Owned Utilities - including SCE - to gut net metering and impose taxes on those who invest in rooftop solar.  If those proposals were to be adopted, much of the economic value of solar could be destroyed.

But it doesn’t have to be that way.  The CPUC is a poltical entity and like any political entity, it responds to pressure from the public.  We cannot match the economic clout of the IOUs, but we can beat them the old fashioned way - by standing up for solar!

It’s easy - just click on this button:


When you do, you will go the Vote Solar website where you can add your name to the list of concerned Californians who want to preserve the many benefits of rooftop solar.  Please pass this word on to your friends and colleagues and urge them to get involved too!

We can win this fight - but we need YOU now!


  09:06:00 am, by Jim Jenal - Founder & CEO   , 558 words  
Categories: Solar Economics, PWP, Residential Solar

Are Pasadena's Electric Rates Regressive?

Recently a potential client was asking us about an oddity in their Pasadena Water and Power (PWP) electric bill.  PWP has a tiered rate structure, but the most visible component of that tiering, the Distribution charge, steps up above 350 kWh of usage in any one month, but it steps down above 750!  Which lead us to the question, are PWP’s electric rates regressive?

Designed that way

PWP’s Residential rate structure, like many utility tariffs, is a model of complexity.  On your bill there are a number of obvious charges, and a few that are not so obvious.  The obvious ones are on the right-hand-side of the bill and include a Customer charge, a Distribution charge, a Transmission charge, and an Energy charge.  (The not-so-obvious charges include those related to public benefit programs and paying to put power lines underground.)

All of these obvious charges are tied to the customer’s usage, but only one, the Distribution charge, is tiered.  At or below 350 kWh of usage per month, the customer pays just 1.5¢/kWh. Between 351 and 750 kWh of usage the Distribution charge increases dramatically all the way up to 11.65¢/kWh, nearly an eight-fold increase!  Ok, the whole point of a tiered rate structure is to discourage higher use by making you pay more as your usage increases.  But PWP’s rate then does something truly odd - above 750 kWh/month the rate comes down, dropping from 11.65¢/kWh to just 8.5¢/kWh!  What sort of an incentive is that?

But is it regressive?

That rate design is certainly counter-intuitive, to say the least, but is it regressive?  In other words, is there a point at which a large residential user ends up paying less per kWh than does someone who uses less?  To find out, we modeled daily usage from 10 kWh/day all the way up to 60 kWh/day.  As a reference, a typical Run on Sun client in PWP’s service area averages around 25 kWh/day.  Since the Transmission and Energy charges are adjusted higher in the summer months, we broke out the overall rates seasonally as well. 

Here are our results (click for larger):

PWP's Residential rate by daily usageThe blue line is the winter rate and the orange is summer.  If you use a tiny amount of energy you will pay between sixteen and seventeen cents per kWh, with rates rising sharply until you get to 25 kWh/day.  Beyond that, the rate of growth flattens out markedly, but it never dips down. (That is true even if you carry the analysis all the way out to 200 kWh/day!)

Contrast this with the SCE Domestic rate - that is a truly aggressively progressive rate structure with energy charges of 14.5¢/kWh for those using within the smallest (baseline) tier of energy, going all the way up to 30.8¢/kWh for energy used in the fourth tier, which kicks in for monthly usage above approximately 900 kWh.

So no, PWP’s Residential rate is not regressive, but by flattening out the rate for usage above 25 kWh/day, it sends at best a mixed signal if the utility is trying to encourage its customers to reduce their usage. 

How does this relate to solar?  Well, if your usage is above 20 kWh/day you are spending at least 20¢/kWh whereas the cost of a solar power system will be less than half of that!  So yes, in PWP territory - and particularly while they still have rebates in place - installing solar will still pay you big dividends.


  06:41:00 pm, by Laurel Hamilton, Projects Coordinator, Run on Sun   , 728 words  
Categories: All About Solar Power, Commercial Solar, Residential Solar

Roofing reality check. Top 3 considerations for solar

So, you are considering a solar power system for your home or business… and why not, given the myriad of social, environmental and economic benefits! But how do you know if your roof is a good candidate? This is one of the top questions to consider carefully before investing in solar. 

Many faces can make layout challenging.1. Do I have enough space?

The size of your solar system is dependent on your usage needs and the amount you want to offset. However, it is not uncommon to find homes and businesses which are “footprint-constrained” - meaning their system size is limited by the space available.

A few things to keep in mind as you look at your roof and ponder how big is big enough… First, while there are many different solar panels they are typically the same size. Run on Sun uses LG panels which are about 65 x 40 inches and can be placed in either a portrait or landscape layout. Panel energy ratings vary, 280-305 watt panels are currently available from LG. For an average home (5 kW) that means you would need around 16-18 panels to offset the bulk of your electricity.

Another limitation is that the fire code requires three feet of clear space from all ridges. If you have an irregular shaped roof with many valleys and peaks it may make the layout very challenging. Given that the panels are rectangular and racking is mounted parallel to the roof, rectangular spaces are ideal. 

Trees can shade your roof and degrade your solar panel output.

2. What if my roof is shaded?

Shading from trees, tall buildings, chimneys, or even parapets on flat roofs can significantly degrade the energy output from solar panels. Sometimes all that needs to be done is a generous trimming of that tree that’s gotten a little out of control over the years. Other times it means you really won’t get your money’s worth out of a solar system. But, if the shade elements are few and only during a short time each day, your roof may still be a viable candidate.

If this is the case be sure to talk to your solar contractor about inverters. We have written a great deal about the advantages of “microinverters” in handling shaded roofs, particularly those made by Enphase Energy.  “String inverters” on the other hand would be a bad choice as the entire system would degrade when any single panel is shaded. 


3. Should I re-roof my house before adding a solar system?

This may be the most important and frequently overlooked question to consider when researching if solar is right for you. Part of what makes solar a great investment is the 25+ year lifetime of the system. But if you have to re-roof during that time there are added costs to remove and re-install the system. If you are planning to re-roof during the lifetime of your solar array be sure you select components, such as the racking system, from companies that…A. will still be around 15-25 years later, and B. will be able to provide compatible replacement parts when pieces are lost during removal and re-installation. Avoid newer companies testing out “state-of-the-art” racking systems and cheap companies banking on the solar boom alone.

For this reason we always ask owners the age of their roof. In southern California, a roof over ten years old should get a makeover before installing solar. If you are unsure of the condition, it is a good idea to have a professional roofer take a look and give you an expert opinion. Sometimes solar contractors can offer this as part of their free assessment. (Run on Sun works with a very reliable roofer who is happy to take a look at any roof in question!) If the roof still has some life left in it but not enough to outlast the solar system you could re-roof only the area where the solar array will cover and plan to do the rest later. An added benefit is that the solar panels will actually protect your roof from the elements, helping it to last longer.


Unfortunately, you will likely be able to find someone willing to put solar on your roof even if it isn’t a good candidate. But if they aren’t discussing the above issues with you, then red flags should be flying! To ensure you get the best investment possible, do your research, take a good long look at your roof, and discuss all of your concerns with your solar contractor. 


  04:49:00 pm, by Jim Jenal - Founder & CEO   , 1451 words  
Categories: All About Solar Power, Solar Economics, Residential Solar, Ranting, Energy Storage

Elon Musk's 3-Biggest Powerwall Whoppers

Elon Musk is a visionary and a showman, but occasionally his enthusiasm for his vision gets way out ahead of reality.  Nowhere was that disconnect more on display than this past week when he made his much talked about announcement of the Tesla Powerwall battery storage system.  While we share the vision for the potential of battery systems (such as the one Enphase Energy is set to release later this year, albeit in a far more understated fashion), when 38,000 people go online to order a product that doesn’t yet exist, it is time to debunk some of the more exorbitant claims made by Musk. 

Here are the three biggest whoppers that Musk made during his Powerwall presentation (video below).

Whopper #3 - Power for an ice storm or other significant grid failure event

Musk touted the “peace of mind” that would come from having the Powerwall, and said, “if there’s a cut in the utilities you’re always gonna have power, particularly if you’re in a place that’s very cold, now you don’t have to worry about being out of power if there’s an ice storm.” (See video at 8:35.)

The Powerwall unit that Musk was talking about that was designed for “daily cycling” was a 7 kWh unit that is priced at $3,000.  The average home in the Run on Sun service area uses 25 kWh/day.  So a single Powerwall unit provides roughly one quarter of the energy demand of an average home.  If your desire for “peace of mind” means running your home for a full day in normal fashion, you will need to purchase 4 Powerwall units (assuming you have the wall space to mount them) and that will cost you $12,000.

Of course, many outages last longer than a day.  The longer you want to stay powered, the more units you will need.

Whopper #2 - Powerwall will work with existing solar systems

Musk insisted that Powerwall has been designed to work with solar systems, “right out of the box."  (See video at 8:25.)

Except… that the Powerwall is designed to fit between existing solar panels and the DC-AC inverter(s) in the system (i.e., on the DC side of the system).  But here’s the thing - the vast majority of inverters are what are known as “grid-tied,” which means if the grid goes down, the inverter shuts off, and stays off until the grid comes back.  If the Powerwall is on the DC side, there is no way for it to “mimic” the grid (which, of course, is on the AC side), and so the inverter will shut off.  While the inverter could certainly be replaced with a hybrid inverter (that can work both independently and tied to the grid) such a replacement is a pricey undertaking and certainly not a plug-and-play installation.

But Musk, like the true showman that he is, saved his biggest Whopper for the end…

Whopper #1 - You can go off grid… for $3,500!

Warming to his subject, Musk really brought down the house with his most outrageous claim of all:

You could actually go, if you want, completely off-grid.  You can take your solar panels, charge the battery packs and that’s all you use.  So it gives you safety, security, and it gives you a complete and affordable solution.  And the cost of this is $3,500."  [Gasps and applause from audience.] (Video at 8:55.)

No.  No you cannot.

Let’s unpack his statement.  There’s two major claims here, neither of which is true.  The first is that you could go completely off-grid, and the second is that it would cost you $3,500.  So let’s start with the easy one to disprove, indeed, we already did above: this won’t cost $3,500.  The Powerwall provides 7 kWh of storage.  The average house uses 25 kWh/day.  If the battery has to run your house for just one day, you would need 4 Powerwall units at a cost of $12,000.  (The 7 kWh unit is the one designed for daily cycling - what you need to go off-grid, and it costs $3,000 - if you could actually purchase one, which you can’t.)

So that’s easy to debunk.  But what about the second, more fundamental question.  Can I use this Powerwall system to go off-grid without changing my middle-class, suburban lifestyle?  For most folks the answer is simply, no.  Here’s why.  When you go off-grid you need to be able to meet all of your energy needs all the time without assistance from your local utility.  To do that, you need a battery system large enough to last you during the longest typical shortfall of available energy (i.e., how many stormy/cloudy days in a row will you see), plus a solar array large enough to charge that battery on sunny days while meeting the household needs.  Turns out, that is quite a lot of both.

Folks who design off-grid systems (very few of which are found in areas like Pasadena), typically design for three (or more) days of self-sufficiency (or autonomy, as they put it).  For our typical, 25 kWh/day home, that would require storage of a minimum of 75 kWh.  But according to Tesla, you can only stack a maximum of nine Powerwall units, which limits you to 63 kWh.  Sometime around noon on that third day without sun, your house will shut down.  Oh, and that much storage will cost you $27,000.

What about the solar array side of the equation?  Let’s start by asking how big an array can you fit on an average house?  House sizes have trended bigger in the past couple of decades, so more recently built houses are an overstatement of the average house out there.  Still, to have a starting point (and to give Musk the benefit of the doubt), let’s assume that our average house is 2,400 square feet (a fair estimate based on US Census data), and that it is optimally designed to maximize solar production: a near perfect square with a true south face, pitched at latitude (34° here in Pasadena), with no shading.  Of course, we still have to give the Fire Marshall the desired setoffs so that gets us to 1,115 square feet of roof space (math available upon request), enough for 62 LG 305 solar modules, but because we need to use a hybrid inverter with fixed string sizes, we will drop that down to 60 solar modules. That yields an 18.3 kW system which at $3.50/Watt would cost a cool $64,000 - and be bigger than our biggest ever residential installation. 

So the Sixty-four Thousand Dollar question becomes: How well will that do on meeting our needs?  Per the CSI calculator, this maximal system will produce roughly 29,000 kWh in Year 1, or an average daily output of 79.5 kWh.  (Less in the winter, of course, when you are most likely to see those cloudy days.)  After providing for my daily needs of 25 kWh, I have 54.5 kWh to spare, not quite enough to fully charge my batteries (which require 63 kWh).  A scenario where I have two cloudy days, followed by one partly sunny day, followed by two more cloudy days could easily leave you in the lurch.  And for this you paid a total of $91,000!  If you live somewhere with poorer weather than what we find in the Run on Sun service area (i.e., pretty much the entire rest of the country!) your performance will be even more dismal.

The true value of storage

The sad part of this whole thing is that battery storage combined with solar is going to be huge, but not for the reasons Musk alluded to in his speech.  The future of utility rates is the shift to time-of-use rate structures - a fact already well and painfully known by our clients in SCE territory, and soon to be seen by everyone.  Time-of-use rates, where utility customers pay more for energy during the peak part of the day, are the only way to match utility costs with customer charges.  (It is the head of the Duck in the famous Duck Curve below.)

The famous duck curve

That “overgeneration” that drives down demand at noon is presently fed back to the grid, where the grid operator has to modify the power mix to accommodate it - in essence, it is wasted.  (Although presently, net metering customers get full retail credit for it - something, that in all likelihood, will soon go away.)

But add storage to the mix, and you shift that overgeneration from the middle of the day, to the evening peak hours, benefiting the time-of-use customer as well as the utility.  It is the way to bring about a peaceful end to the utility-solar wars, and it is the true benefit of storage to solar customers - without oversizing either your solar array or your storage system.

So let’s all get excited over solar with storage, but for the right, and much more cost-effective reasons - and not the nonsensical hype being spewed by that super showman, Elon Musk.


  06:21:00 pm, by Jim Jenal - Founder & CEO   , 566 words  
Categories: PWP Rebates, Commercial Solar, Residential Solar

Pasadena Solar Rebates Plummet!

Pasadena Water & Power (PWP) is about to slash its rebates by as much as 55% effective May 1 - the first rebate reduction in three years. Here are the details…

A Model of Stability

We have said it before and we will say it again, our hometown utility gets the highest marks for running the best, hands down, rebate program around.  Their folks are responsive, they have offered a consistent program since we got into this business, and their rebates have been among the highest offered in our service area.  The present rebate rates: $0.85/Watt for residential and small commercial, $1.60/Watt for small non-profit systems have been at that level since 2012 - even while system prices dropped by 25%.  (For large systems > 30 kW, the commercial rebate was 12.9¢/kWh of actual production paid over five years, while the non-profit version was 24.2¢/kWh.)

But all good things must end, including these great rebates - and they will, come May 1.

The Rates They are a Changin’

Money lost

The new rates are significantly less generous - $0.45/Watt for residential and small commercial, $0.90/Watt for small non-profit.  For larger systems the change is even more dramatic, with the rebate payout now only covering two years of production (instead of five) at the rate of 14.4¢/kWh for commercial and 28.8¢/kWh for non-profit.  (One bit of good news, the threshold for systems to be paid rebates over two years instead of at commissioning is going up from 30 kW to 100 kW.)

Leaving Money on the Table…

So what do these rebate reductions really mean?  Let’s look at a few examples.

Residential project - 5 kW

A typical residential project of 5 kW (AC) that submitted a rebate application before May 1 would secure a rebate worth $4,250 (as opposed to na da in SCE territory).  That same system will only receive a rebate of $2,250 - leaving an even $2,000 on the table.  Ouch!

Non-Profit project - 50 kW

A 50 kW non-profit project would earn, over the next five years, a rebate worth approximately $92,400.  But after May 1, only two years of payments will be made worth just $44,600 - a 52% reduction, leaving $47,850 blowin’ in the wind.  Double ouch!  The one side benefit, since this project is smaller than 100 kW (even though it is over the old, 30 kW threshold) it could qualify for the up-front rebate of approximately $39,200 at the time the system is commissioned - less money overall, but you get it faster.

Commercial project - 150 kW

A commercial project of 150 kW under today’s rebates would earn roughly $148,000 over five years, but for rebate applications submitted after May 1, that rebate drops to just $66,900, a reduction of 54.7% leaving nearly $81,000 waving bye-bye.  Brutal.

So… Don’t Just Sit There!

All is not lost, yet.  We still have a month and if you act RIGHT NOW you can still take advantage of the higher rebate rates!  To lock-in the higher rebate, we need to get your energy usage, do a site evaluation, send you a proposal, have you accept the proposal and sign a contract, and we need to get your rebate application on file before May 1.  (I feel a bit like our friends at KPCC - “we need 67 people to call in the next five minutes to meet this challenge…")  Yeah, that’s a fair amount of work in a short time, but if you jump on this opportunity, we can make it happen and you can save some serious money!  So don’t miss the boat…  Call us, or click on the “Let’s get started” link here to begin.

1 2 3 4 5 6 7 8 9 10 11 ... 23 >>


Jim Jenal is the Founder & CEO of Run on Sun, Pasadena's premier installer and integrator of top-of-the-line solar power installations.
In addition, Run on Sun offers solar consulting services, working with consumers, utilities and municipalities to help them make solar power affordable and reliable.

Ready to Save?

Let’s Get Started!

We're Social!

Follow Run on Sun on Twitter Like Run on Sun on Facebook
Run on Sun helps fight Climate Change
powered by b2evolution